Politecnico di Milano - Corso di Laurea in Ingegneria Meccanica

Anno accademico 2020-21

Costruzione di Macchine 1

(Prof. A. Manes, Prof. C. Sbarufatti, Prof. G. Previati)

Tema d'esame: 5 Luglio 2021

NOME	:	ISERVA'	TO AL DOCENTE:	
COGNOME:			4 T-4-1-	
MATRICOLA	:	L	Totale	

Parte 2: Costruzione di macchine 1

Nota: Verranno valutate esclusivamente le risposte agli esercizi fornite sugli apposti fogli prestampati

CM1: Esercizio 4.

Si consideri la struttura di un miscelatore mostrata in Figura 1. All'estremità inferiore dell'albero principale (sezione piena, circolare) è posta una puleggia di raggio r_p , che trasferisce la coppia C all'albero. La puleggia è mossa da un cavo che esercita la forza T (**fissa per un osservatore esterno** e diretta lungo l'asse x del sistema di riferimento indicato) sulla puleggia stessa. La forza scambiata dalla pala e dal fluido è mostrata in Figura 1 come F (**fissa per un osservatore solidale all'albero** e diretta lungo l'asse x nella Figura). L'albero ruota ad una velocità angolare costante ω .

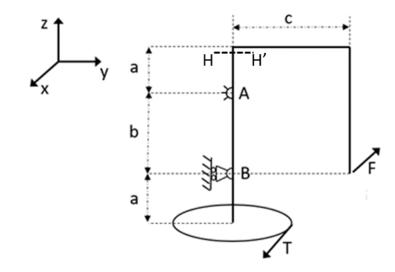


Figura 1

Considerando i dati riportati in Tabella 1, si richiede di:

- 1. Determinare il valore del carico T agente sulla puleggia e della forza F, assumendo l'albero in equilibrio. Il carico F ruota nello spazio solidale alla pala.
- 2. Disegnare i diagrammi delle azioni interne, limitatamente ai momenti flettente e torcente e separando tra effetti rotanti e fissi.
- 3. Effettuare la verifica statica a prima plasticizzazione nella sezione HH'.
- 4. Effettuare la verifica a fatica in B.

Tabella 1. Dati

Carichi

C = 350 Nm

Geometria struttura

a = 150 mm

b = 400 mm

 $c = 350 \, mm$

 $r_p = 200 \ mm$

 $\dot{d} = 32 \, mm \, (diametro \, albero)$

Fattori geometrici/sovrasollecitazioni locali:

 $b_2 = 0.9$ $b_3 = 0.9$ q = 0.85

 $Kt_{f,ang} = 1.8$; $Kt_{t,ang} = 1.6$ (angoli struttura) $Kt_{f,cus} = 1.4$ (zone alloggiamento cuscinetti)

Materiale: 30NiCrMo3

 $\sigma_R = 600MPa$

 $\sigma_{sn} = 500MPa$