CM1: Esercizio 5.

Descrivere i fattori da considerare per ricavare il diagramma S-N di un componente reale a partire da quello del provino standard, nelle condizioni di i) carico assiale e ii) carico flessionale, motivando il loro utilizzo.

Politecnico di Milano - Corso di Laurea in Ingegneria Meccanica

Anno accademico 2021-22

Costruzione di Macchine 1

(Prof. S. Bagherifard, Prof. F. Cadini, Prof. C. Sbarufatti)

Tema d'esame: 9 giugno 2022

NOME : SPAZIO RISERVATO AL DOCENTE:

COGNOME: 5
Totale

MATRICOLA:

NOTA: Le risposte agli esercizi vanno compilate esclusivamente sui fogli consegnati.

Parte 2: Costruzione di macchine 1

CM1: Esercizio 4.

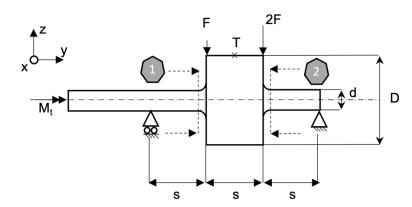


Figura 1. Schematizzazione struttura, vincoli e forze

Si consideri un sistema di trasmissione di potenza schematizzata come in Figura 1. L'albero è messo in rotazione a velocità costante da un motore attraverso M_t. La potenza viene tramessa all'utilizzatore attraverso una coppia di ruote dentate a denti diritti. In Figura 1 viene riportata una sola ruota con le forze trasmesse dalla ruota motrice, ovvero la forza tangente (T, fissa nello spazio, centrata sulla ruota e concorde con l'asse x negativo) e le due forze radiali (F e 2F, entrambe orientate con l'asse z negativo e fisse nello spazio). La zona di calettamento della ruota presenta una variazione di sezione, caratterizzata dai coefficienti di intaglio riportati di seguito.

Si chiede di:

- 1) Tracciare i diagrammi delle azioni interne nell'albero (taglio, momento torcente M_t e momento flettente M_{fl}).
- 2) Verificare staticamente la struttura sia a prima plasticizzazione che per plasticizzazione totale nella sezione 1, considerando le forze e il momento come statiche.
- 3) Eseguire la verifica a fatica delle sezioni 1 e 2.

Dati:

200 mm	Dimensione geometrica
40 mm	Diametro albero
160 mm	Diametro primitivo ingranaggio
1000 N	Carico radiale
3000 N	Carico tangenziale
900 MPa	Tensione a rottura del materiale dell'albero
580 MPa	Tensione a snervamento del materiale dell'albero
1.7	Coefficiente di intaglio teorico a flessione per le sezioni intagliate
1.5	Coefficiente di intaglio teorico a flessione per le sezioni intagliate
	40 mm 160 mm 1000 N 3000 N 900 MPa 580 MPa 1.7

b_2	0.8	Coefficiente dimensionale a fatica
b_3	0.9	Coefficiente finitura superficiale a fatica
a	0.85	Parametro materiale per sensibilità intaglio a fatica