Esercizio 5.

Si discutano i seguenti aspetti nella verifica di resistenza a fatica:

- 1) L'effetto del tipo di materiale (carico di rottura R_m) sui coefficienti b₃ e K_f
- 2) L'uso del coefficiente b₂, fornendo le motivazioni e i limiti di utilizzo.

Politecnico di Milano - Corso di Laurea in Ingegneria Meccanica

Anno accademico 2024-25

Costruzione di Macchine

(Prof. S. Bagherifard, Prof. F. Ballo, Prof. L. Patriarca)

Tema d'esame: 27 Giugno 2025

SPAZIO RISERVATO AL DOCENTE:

 NOME
 4

 COGNOME
 5

 MATRICOLA
 Totale

Nota: Verranno valutate esclusivamente le risposte agli esercizi fornite sugli apposti fogli prestampati

Esercizio 4.

Una struttura composta da una singola asta di sezione circolare cava (diametro esterno D, diametro interno d) è incastrata al muro. La struttura è soggetta a una forza F1 in direzione x e verso negativo, mentre una forza F2 agisce lungo l'asse z sulla struttura. Vicino all'incastro H-H, la struttura presenta un intaglio con caratteristiche note.

Considerando lo schema mostrato in Figura, si chiede di:

- 1) Tracciare i diagrammi delle azioni interne (assiale, taglio, flessione e torsione) della struttura, separatamente per le forze F1 e F2.
- 2) Effettuare la verifica statica della sezione H-H vicino all'incastro considerando un aumento delle forze (F1 e F2) del 30%.
- 3) Eseguire la verifica a fatica nella sezione H-H, considerando le forze a regime come F1=F1sin(wt) e F2=F2sin(wt).

Dati

a = 600 mm

b = 1400 mm

F1 = 1200 N

F2 = 3000 N

Sezione H-H

D = 80 mm

d = 60 mm

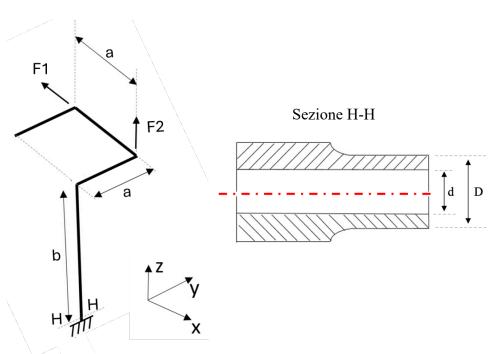
 K_{tf} (azione interna di momento

flettente) = 1.75

K_{tt} (azione interna di momento

torcente) = 1.35

 $b_2 = b_3 = 0.85$


Materiale

 $R_m = 700 \text{ MPa}$

 $R_{sn} = 450 \text{ MPa}$

q (fattore di sensibilità

dell'intaglio a fatica) = 0.9

